Очень полезная задача. Только зачем 3 раза делать одно и то же? 1) находим координаты середины отрезка АВ: ((-2+2)/2;(0+4)/2) или (0;2) 2) находим уравнение прямой, проходящей через эту середину и точку С Ищем неизвестные коэффициенты в уравнении у=ах+b. Для этого составим систему уравнений, учитывая, что две упомянутые точки принадлежат прямой 2=а*0+b 0=a*4+b Из первого уравнения b=2. Из второго а=-0,5 ответ у=-0,5*х+2 Все подробно. Попробуй остальные уравнения получить сам. Если не получится, в 21-00 выложу остальные решения
1) Биссектриса угла прямоугольника делит угол в 90° пополам, то есть по 45°. Поэтому она отсекает на большей стороне отрезок, равный меньшей стороне прямоугольника. Обозначим стороны прямоугольника как 3х и 4х. Сумма двух сторон равна половине периметра, то есть: 3х+4х = 42/2 = 21 см. 7х = 21 см. х = 21/7 = 3 см. ответ: меньшая сторона равна 3х = 3*3 = 9 см.
2) Обозначим острый угол параллелограмма α. Тупой угол равен 180-α, половина его равна (180-α)/2 = 90-(α/2). Угол между боковой стороной и высотой равен 90-α. По заданию угол в 20° равен (90-(α/2)) - (90-α) = α - (α/2) = α/2. ответ: α = 2*20 = 40°.
получаем
2х+2х+х=35
5х=35
х=7 это основание
2х=14 это сторона