Находим площадь основания призмы.
V = SoH, отсюда находим So = V/H = 672/8 = 84 кв.ед.
Примем ВС = х, а АД = 6х.
Проекция АВ на АД равна (6х - х)/2 = 2,5х.
Используем формулу площади трапеции.
So = ((6x + x)/2)*H, или 84 = 3,5х*6х = 21х².
Отсюда находим неизвестную х = √(84/21) = √4 = 2.
Теперь находим АВ = √((2,5х)² + (6х)²) = √(42,25х²) = 6,5х.
Длина АВ = 6,5*2 = 13.
Переходим к заданному сечению.
Это прямоугольник, основание равно АВ как параллельная секущая при параллельных прямых, высота равна высоте призмы.
ответ: Sсеч = 13*8 = 104 кв.ед.
Сравнить отрезки можно двумя наложением или измерением их длин. Чтобы установить, равны они или нет, наложим один отрезок на другой так, чтобы конец одного отрезка совместился с концом другого.Если при наложении отрезков оба их конца совмещаются, значит отрезки равны.
При сравнении отрезков путём измерения их длин больше будет тот отрезок, у которого больше длина:
Если при измерении отрезков их длины равны, то и отрезки равныСравнить отрезки можно двумя наложением или измерением их длин.
Объяснение:
видеуроки посмотри, лучше поймешь) удачи)