Каждая точка биссектрисы равноудалена от сторон угла. ОК⊥МР, ОЕ⊥MN, значит ОК=ОЕ. Это легко проверить если рассмотреть треугольники МОК и МОЕ. В них МО - общая сторона, ∠ОМК=∠ОМЕ и оба треугольника прямоугольные, значит треугольники равны, значит катеты ОК и ОЕ равны, в нашем случае это 9 см.
Материал главы viii буквально неисчерпаем. какой бы эпизод ни был взят для анализа («знакомство алеши с хорошим делом», «хорошее дело слушает бабушкин рассказ», «хорошее дело беседует с бабушкой», «хорошее дело и алеша любуются природой», «хорошее дело работает», «прощание хорошего дела с алешей»), он дает богатейший художественный материал для понимания характеров хорошего дела и алеши, читатели знакомы с высказываниями алеши об окружающих его людях и о жизни. теперь важно вдуматься в оценки хорошего дела, понять его отношение к жизни и людям, и сравнить его высказывания с высказываниями алеши.
Построение сечения: Назовем искомую плоскость MNK . Плоскости ABC и A1B1C1 параллельны и пересечены плоскостью , следовательно, линии пересечения параллельны. Значит, пересекает А1В1С1 по прямой КF, параллельной MN. Значит, F - середина А1В1. Осталось соединить KF, FM, MN, NK. Искомое сечение - FKNM. Доказательство: В треугольнике ABD MN-средняя линия, MN || BD. Т.к MN лежит в плоскости сечения MNK, а BD параллельна прямой MN, лежащей в плоскости сечения, ВD параллельна плоскости MNK, что и требовалось доказать.
ОК⊥МР, ОЕ⊥MN, значит ОК=ОЕ.
Это легко проверить если рассмотреть треугольники МОК и МОЕ. В них МО - общая сторона, ∠ОМК=∠ОМЕ и оба треугольника прямоугольные, значит треугольники равны, значит катеты ОК и ОЕ равны, в нашем случае это 9 см.