Так как трапеция равнобедренная, оба её острых угла при основании АD равны 45°.
Из С проведем СМ параллельно АВ (М принадлежит АD).
АВСМ - параллелограмм, ⇒ его противоположные стороны равны.
АМ=ВС ⇒ МD=АD-AM=16-8= 8
В ∆ МСD ∠СМD=∠ВАD=45°, как углы при параллельных АВ и СМ и секущей АD.
Так как в ∆ МСD два угла равны 45°, ∠ MCD= 90° ⇒
∆ МСD - равнобедренный прямоугольный,
Высота (и медиана) СН в нем по свойству медианы прямоугольного треугольника равна половине гипотенузы МD. СН=4 см.
S (ABCD)=(8+16)•4:2=48 см²
Так как трапеция равнобедренная, оба её острых угла при основании АD равны 45°.
Из С проведем СМ параллельно АВ (М принадлежит АD).
АВСМ - параллелограмм, ⇒ его противоположные стороны равны.
АМ=ВС ⇒ МD=АD-AM=16-8= 8
В ∆ МСD ∠СМD=∠ВАD=45°, как углы при параллельных АВ и СМ и секущей АD.
Так как в ∆ МСD два угла равны 45°, ∠ MCD= 90° ⇒
∆ МСD - равнобедренный прямоугольный,
Высота (и медиана) СН в нем по свойству медианы прямоугольного треугольника равна половине гипотенузы МD. СН=4 см.
S (ABCD)=(8+16)•4:2=48 см²
Точка О - это точка пересечения высот(медиан, биссектрис) треугольника.
Найдём по т. Пифагора высоту(медиану, биссектрису) этого треугольника:
h²= 9² - 4,5² = 243/4
h = 9√3/2
Вся штука в том, что медианы пересекаются в отношении 1 к 2. Т.е. медианы делятся на отрезки 9√3/6= 3√3/2 и 18√3 /6 = 3√3
Берём прямоугольный треугольник, в котором катет = 12,
второй катет =3√3/2, а гипотенуза -искомое расстояние= х
По т. Пифагора х² = 144 + 27/4= 603/4
х = 3√67/2