Для начала найдём все углы: <A - <B/2; <B = <C-30.
Объявим угол <A — как переменную "x", угол B объявим как: 2x, угол C объявим как: 2x+30.
<A = x
<B = 2x
<C = 2x+30
x+2x+2x+30 = 180°
5x+30 = 180°
5x = 150° ⇒ x = 150/5 = 30° ⇒ <A = 30°
<B = 30*2 = 60°
<C = <B+30 = 90°.
Как мы видим, наш треугольник ABC — прямоугольный, так как имеет один прямой угол(<C).
AB — гипотенуза, известный нам катет — BC.
Катет BC — лежит напротив угла A(30°).
Теорема 30-градусного угла в прямоугольном треугольнике такова: катет, протолежащий углу 30-и градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2; BC = 2 ⇒ AB = 2*2 = 4.
Вывод: AB = 4.
Обозначим данный треугольник АВС, ∠С=90°, ∠А=30°, ВК- биссектриса ∠АВС, КМ⊥АВ.
Сумма острых углов прямоугольного треугольника равна 90°.
∠САВ=30°, ∠АВС=60°.
Биссектриса делит угол пополам, ⇒∠КВС=∠КВМ=30°
Прямоугольные ∆ КВС=∆ КВМ по острому углу и общей гипотенузу. ⇒
КС=КМ.
В ∆ АКМ катет КМ противолежит углу 30° и равен половине гипотенузы АК (свойство).
Примем КМ=а
Тогда АК=2а
Так как КС=КМ, то АС=3а
3а=18, а=6 см.
КС=а=6 см, КА=18-6=12 см
* * *
Решить задачу можно разными Например, по т. Пифагора найти АВ и ВС и применить и свойство биссектрисы, которая делит противоположную углу сторону в отношении прилежащих сторон. Можно воспользоваться функциями острых углов, - это зависит от темы, которую в настоящее время проходите, но данное решение самое простое.