P=244 см
В ромбе все стороны равны:
244:4=61 см.
d1=120 см.
Диагонали ромба в точке их пересечения делятся пополам.
Значит, 120:2=60 см - половина диагонали.
Диагонали ромба взаимно перпендикулярны (пересекаются под прямым углом).
Прямоугольный треугольник, сторона, являющаяся гипотенузой и равная 61 см, катет (половина диагонали), равный 60 см.
По теореме Пифагора:
61^2=х^2+60^2
3721=х^2+3600
3721-х^2-3600=0(3721-3600)
121-х^2=0
(11-х)(11+х)=0
11-х=0. 11+х=0
-х=-11 х=-11, не удовлетворяет условие.
х=11-удовлетворяет условие, половина d2
11*2=22
ответ:22
7.
Что-то требование я не нахожу, так что найду все углы.
∠BOC = 137° => <COD = 180-137 = 43°
CO == CD => <COD == <CDO = 43° => <OCD = 180-(43+43) = 94°
<COD вертикален с углом <AOB => <AOB == <COD = 43°
AO == AB => <OAB & <ABO = (180-43)/2 = 68.5°.
ответ: <COD = 43°, <OCD = 94°, <AOB == <COD = 43°, <ABO == <OAB = 68.5°.
5.
<BCD = 180-120 => <BCA = 60°
AB == BC => <BAC == <BCA = 60°
<B = 180-(60+60) = 60°.
6. AB == BC => <C == <A = 50°
<B = 180-(50+50) = 80°
Предполагаю, AD — это бисектриса.
<DAC = 50/2 = 25°
<ADC = 180-(50+25) = 105°.
H = CD
R = 1/2 BC
ΔBCD: ∠C = 90°
cos 60° = CD/BD
CD = BD · cos 60° = 18 ·1/2 = 9
sin 60° = BC/BD
BC = BD · sin60° = 18√3 / 2 = 9√3
H = 9
R = 9√3/2
Sпов = 2πR(H + R) = 2π ·9√3/2(9 + 9√3/2) = 81√3π(1 + √3/2)