В прямоугольном треугольнике ABE, AB=4 - гипотенуза, AE - катет, BE - катет, лежащий против угла А=30 градусов. Такой катет равен половине гипотенузы BE = AB / 2 = 4/2 = 2 (cм)
Если в данном прямоугольном треугольнике есть угол, равный 60-ти градусам, то в нём будет угол, равный 30-ти градусам(180-90-60=30). Как нам известно, в треугольниках напротив большего угла лежит бОльшая сторона этого самого треугольника, т.е. напротив угла в 30 градусов лежит меньший катет этого прямоугольного треугольника. А как нам всем известно, в прямоугольном треугольника сторона, лежащая напротив угла в 30 градусов, равна половине его гипотенузы. Т.е. разница между гипотенузой и меньшим катетом треугольника является просто разницей между гипотенузой и её половины. Значит сама гипотенуза равна 6-ти см(3*2=6), а меньший катет равен 3-ём см. ответ: гипотенуза=6 см, меньший катет=3 см.
Решение: 1)B=80(по усл);AM- биссектриса(по усл);CK- биссектириса(по усл) 2)Так как CK и AM биссектрисы, то ACK=BCK и BAM=MAC. В треугольнике 180 градусов ( по теории). 3)KOM=AOC (верт). 4)Так как на против равных углов лежат равные стороны, то BK=BM и треугольник KBM- равнобедренный, значит угол K= углу M. 5)180-80/2=50 угол AOC=углу KOM=50 градусов (верт) ответ:50 градусов
BE = AB / 2 = 4/2 = 2 (cм)