Стороны основания прямого параллелепипеда равны 3 см и 8 см,а угол между ними равен 60° . площадь боковой поверхности параллелепипеда равна 286 см^2. найти площадь меньшего диагонального сечения.
В основании параллелепипеда, параллелограмме a=3 см, b=8 см, ∠α=60°, d - меньшая диагональ основания. В параллелограмме меньшая диагональ лежит напротив меньшего угла. В параллелограмме пара острых и пара тупых углов. ∠60° острый, значит d лежит напротив него. Площадь боковой поверхности: Sб=P·h=2(a+b)·h, где h - высота параллелепипеда. h=Sб/(2(a+b))=286/(2(3+8))=13 см. По теореме косинусов d²=a²+b²-2ab·cos60=3²+8²-2·3·8/2=49, d=7 см. Диагональное сечение прямого параллелепипеда - это прямоугольник, образованный диагоналями основания и боковыми рёбрами. Площадь диагонального сечения: Sд=d·h=7·13=91 см² - это ответ.
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
В параллелограмме меньшая диагональ лежит напротив меньшего угла. В параллелограмме пара острых и пара тупых углов. ∠60° острый, значит d лежит напротив него.
Площадь боковой поверхности: Sб=P·h=2(a+b)·h, где h - высота параллелепипеда.
h=Sб/(2(a+b))=286/(2(3+8))=13 см.
По теореме косинусов d²=a²+b²-2ab·cos60=3²+8²-2·3·8/2=49,
d=7 см.
Диагональное сечение прямого параллелепипеда - это прямоугольник, образованный диагоналями основания и боковыми рёбрами.
Площадь диагонального сечения:
Sд=d·h=7·13=91 см² - это ответ.