Так как в △ABC стороны AC и BC равны, то этот треугольник равнобедренный, тогда сторона AB является основанием равнобедренного треугольника, а ∠A и ∠B — углы при основании равнобедренного треугольника. Тогда:
∠A = ∠B.
Так как ∠A и ∠B равны, то синусы этих углов будут также равны.
В △AHB ∠AHB = 90° (так как AH — высота), тогда сторона AB, лежащая напротив прямого угла, является гипотенузой △AHB, а стороны AH и BH —катетами.
В прямоугольном треугольнике синусом острого угла называется отношение катета, который лежит напротив этого угла, к гипотенузе. Напротив ∠B лежит катет AH, тогда:
sin∠B = AH / AB.
По условию AH = 3, а AB = 10, тогда:
sin∠B = 3/10 = 0, 3.
Так как синус ∠B равен синусу ∠A (он же ∠BAC), то:
sin∠A = 0, 3.
ответ: sin∠A = 0, 3.
Так как сумма углов треугольника равна 180, а третий угол нам известен (это прямой угол в 90 градусов), то запишем
Что же это значит? Это значит, что сумма двух острых углов равна 90 градусов. Это справедливо для любого прямоугольного треугольника.
Теперь нам известно, что один угол больше другого на 30 градусов. Пусть . Тогда
Это и есть наш больший острый угол, ведь , то есть угол бета больше угла альфа.
ответ: 60 градусов.