Впрямоугольном треугольнике точка касания вписанной в него окружности и гипотенузы делит гипотенузу на отрезки, длины которых равны 3 и 7. найдите площадь треугольника
Обозначим катеты а и в, радиус вписанной окружности r. На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7. Тогда катеты равны r+3 и r+7. По Пифагору (r+3)² + (r+7)² = 10². r²+6r+9+r²+14r+49 = 100. 2r²+20r-42 = 0, r²+10r-21 = 0. Квадратное уравнение, решаем относительно r: Ищем дискриминант: D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня: r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем. Определяем катеты: а = √46-5+3 = √46-2, в = √46-5+7 = √46+2. Площадь S треугольника равна: S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.
Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла. Катеты — стороны, лежащие напротив острых углов. Катет, лежащий напротив угла, называется противолежащим (по отношению к углу ). Другой катет, который лежит на одной из сторон угла, называется прилежащим. Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе. Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе. Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему. Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу. Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу).
На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7.
Тогда катеты равны r+3 и r+7.
По Пифагору (r+3)² + (r+7)² = 10².
r²+6r+9+r²+14r+49 = 100.
2r²+20r-42 = 0,
r²+10r-21 = 0.
Квадратное уравнение, решаем относительно r: Ищем дискриминант:
D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня:
r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем.
Определяем катеты:
а = √46-5+3 = √46-2,
в = √46-5+7 = √46+2.
Площадь S треугольника равна:
S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.