Радиус: 5
Объяснение:
Подставляем (x−5)2−25вместо x2−10x в уравнение x2+y2−10x=0. (x−5)2−25+y2=0
Переносим−25 в правую часть уравнения, прибавляя 25 к обеим частям.(x−5)2+y2=0+25
Складываем 0 и 25.(x−5)2+y2=25
Это вид уравнения окружности, который можно использовать для определения центра и радиуса окружности. (x−h)2+(y−k)2=r2
Сопоставьте параметры окружности со значениями в ее каноническом виде. Переменная r представляет радиус окружности, h представляет сдвиг по оси X от начала координат, а k представляет сдвиг по оси Y от начала координат.r=5h=5k=0
Центр окружности находится в точке (h;k). Центр:(5;0)
Эти величины представляют важные значения для построения графика и анализа окружности. Центр: (5;0)
На рисунке АВ:АD = АС:АЕ = ВС:ЕD. Это означает, что ΔАВС подобен ΔADE и ∠АВС = ∠ADE; ∠ВСА = ∠AED.
Объяснение:
1. 2-й признак подобия: "Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого, и углы, лежащие между ними, равны".
В нашем случае АВ/AD = АС/АЕ и ∠А - общий. Значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.
2. 3-й признак подобия: "Два треугольника подобны, если три стороны одного треугольника пропорциональны трем сторонам другого".
В нашем случае AB/AD=AC/AE = BC/ED, значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.