Из точки к плоскости проведены две наклонные. найдите расстояние от данной точки до плоскости если разница длины наклонных равна 5см а их проекции равны 7 и 18 см
Наклонные, их проекции на плоскость и перпендикуляр из точки на плоскость образуют два прямоугольных треугольника с общим катетом h. Наклонная, образующая меньшую проекцию, меньше наклонной с большей проекцией. Пусть меньшая наклонная равна х, тогда большая х+5. По теореме Пифагора h²=x²-7²=x²-49 и h²=(x+5)²-18²=х²+10х+25-324=х²+10х-299. Объединим два уравнения h²: х²-49=х²+10х-299, 10х=250, х=25.
1. Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
Верно не всегда. Если угол при вершине треугольника тупой, то центр описанной окружности лежит на продолжении высоты, проведенной из вершины, вне треугольника.
2. Если в треугольнике АВС углы А и В равны соответственно 40 и 70, то внешний угол при вершине С этого треугольника равен 70.
Неверно. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Значит внешний угол при вершине С равен 40° + 70° = 110°.
3. Все хорды одной окружности равны между собой.
Не верно. Хорда - отрезок, соединяющий любые две точки окружности. На рисунке АВ ≠ CD.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Наклонная, образующая меньшую проекцию, меньше наклонной с большей проекцией.
Пусть меньшая наклонная равна х, тогда большая х+5.
По теореме Пифагора h²=x²-7²=x²-49 и h²=(x+5)²-18²=х²+10х+25-324=х²+10х-299.
Объединим два уравнения h²:
х²-49=х²+10х-299,
10х=250,
х=25.
h²=х²-49=25²-49=576,
h=24 см - это ответ.