Треугольники АВС и ADC лежат в разных плоскостях, АВ=ВС=AD=CD=4 см, АС=6 см .BD=√21 см. Найдите угол между плоскостями АВС и ADC.
Объяснение:
1 ) Пусть ВН⊥АС .Тогда ВН-медиана ,тк ΔАВС-равнобедренный , и АН=НС = 3 см.
ΔВСН-прямоугольный , по т Пифагора ВН=√(СН²- ВС²)=√(16-9)=√7 (см).
2)Отрезок DH-медиана для ΔАDC, тк Н-середина АС.Тогда для ΔCDH по т. Пифагора DH=√7 см.
Медиана DH для ΔСDH является высотой по свойству медианы равнобедренного треугольника.
3)Тк.DH⊥AC,BH⊥AC , то ∠ВНD- линейный угол двугранного угла между плоскостями АВС и ADC.
По т. косинусов DB²=DH²+BH²-2*DH*BH*cos (∠BHD),
(√21)²= 2*(√7)²-2*√7*√7 *cos (∠BHD),
21=14-14*cos (∠BHD) , -14cos (∠BHD)=7 , cos (∠BHD)= - 1/2.
∠BHD=120° .
В прямоугольном треугольнике LHE: LH и HE - катеты, LE - гипотенуза.
По условию гипотенуза LE в 2 раза больше катета LH ⇒ угол LEH= 30° т.к. катет, противолежащий углу 30°, равен половине гипотенузы.
Угол PEL равен 30°, т.к. биссектриса LE делит угол PEH пополам ⇒
⇒ угол PEH = 30 + 30 = 60° ⇒ угол EPH = 180 - 90 - 60 = 30° ⇒ треугольник PLE - равнобедренный с основанием PE, углами при основании равными 30° каждый ⇒ PL = LE как боковые стороны равнобедренного треугольника.
Пусть LE = Х, тогда
PL = Х
LH = X / 2
HP = X + 8 (по условию)
HP = PL + LH = X + X/2
x + x/2 = x + 8
x - x + x/2 = 8
x/2 = 8
x = 8 * 2
x = 16
LE = 16 (cм)
HP = 16 + 8 = 24 (см)
ответ: 24 cм