Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°
У этой задачки есть очень наглядное решение.
Можно взять три взаимно перпендикулярные координатные оси и разместить четыре вершины прирамиды в точках (0,0,0) (1,0,0) (0,1,0) (0,0,1). Легко убедиться, что любая из вершин, кроме (0,0,0), является вершиной трехгранного угла, заданного в задаче.
Сама пирамида при этом представляет собой правильную треугольную пирамиду, "боковые" грани которой - равнобедренные прямоугольние треугольники, а "основание" - правильный треугольник с вершинами в точках (1,0,0) (0,1,0) (0,0,1).
Поэтому искомый угол равен 60 градусам.
Эту же мысль (трудно назвать это решением - уж больно просто:)) можно выразить без упоминания координатных осей. Дело в том, что упомянутая пирамида - это часть обыкновенного куба, отсекаемая плоскостью, проходящей через концы трех ребер, имеющих общую вершину.
Берется какая -то вершина куба АBCDA1B1C1D1, например, А, и проводится сечение через точки В, D и А1, у пирамиды А1BDA все трехгранные углы при вершинах "основания" A1BD соответствуют условию задачи. В самом деле, рассмотрим, например, вершину D. Треугольники ADB и ADA1 - равноберенные прямоугольние, поэтому углы АDB и ADA1 равны 45 градусов. Что же касается двугранного угла между плоскостями АDB и ADA1, то это - двугранный угол между гранями куба :), то есть он равен 90 градусам.
Поэтому трехгранный угол при вершине D пирамиды А1BDA удовлетворяет условию задачи. По условию задачи, нужно найти угол A1DB, но он очевидно равен 60 градусам, поскольку треугольник A1DB равносторонний.
Ортоцентр треугольника — точка пересечения его высот или их продолжений.
Обозначим высоту из С - СК, высоту из А - АМ.
∆АВМ~∆КВС - прямоугольные с общим острым углом при В.
Отсюда ∠ВАМ=∠ВСК.
Вписанные ∠А1СВ и ∠ВАА1 опираются на одну дугу ВА1 - след. они равны.
В ∆ НСА1 угол НМС прямой, отрезок СМ - высота и биссектриса - что является свойством высоты равнобедренного треугольника. Поэтому СМ еще и медиана, и НМ=МА1.
Прямая ВС делит НА1 пополам, ч.т.д.