М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zhigulovnik
zhigulovnik
07.05.2020 05:41 •  Геометрия

Точка н - ортоцентр труегольника авс.прямая ан пересекает описанную около авс окружность в точке а1. докажите,что прямая вс делит отрезок на1 пополам.

👇
Ответ:

Ортоцентр треугольника  — точка пересечения  его высот или их продолжений.  

Обозначим высоту из С - СК, высоту из А - АМ. 

∆АВМ~∆КВС - прямоугольные с общим острым углом при В. 

Отсюда ∠ВАМ=∠ВСК. 

 Вписанные ∠А1СВ и ∠ВАА1 опираются на одну дугу ВА1 - след. они равны. 

В ∆ НСА1 угол НМС прямой, отрезок СМ - высота и биссектриса - что является свойством высоты равнобедренного треугольника. Поэтому СМ еще и медиана, и НМ=МА1. 

Прямая ВС делит НА1 пополам, ч.т.д. 


Точка н - ортоцентр труегольника авс.прямая ан пересекает описанную около авс окружность в точке а1.
4,4(65 оценок)
Открыть все ответы
Ответ:
yana3657
yana3657
07.05.2020

Две прямые касаются окружности (радиусом 9 см) с центром О в точках  Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.

Объяснение:

Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.

Найти ∠РМК.

Решение.

ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.

Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.

Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°

ответ.∠РМК=60°

4,5(75 оценок)
Ответ:
sonyaovch
sonyaovch
07.05.2020

У этой задачки есть очень наглядное решение.

Можно взять три взаимно перпендикулярные координатные оси и разместить четыре вершины прирамиды в точках (0,0,0) (1,0,0) (0,1,0) (0,0,1). Легко убедиться, что любая из вершин, кроме (0,0,0), является вершиной трехгранного угла, заданного в задаче. 

Сама пирамида при этом представляет собой правильную треугольную пирамиду, "боковые" грани которой - равнобедренные прямоугольние треугольники, а "основание" - правильный треугольник с вершинами в точках (1,0,0) (0,1,0) (0,0,1).

Поэтому искомый угол равен 60 градусам.

 

Эту же мысль (трудно назвать это решением - уж больно просто:)) можно выразить без упоминания координатных осей. Дело в том, что упомянутая пирамида - это часть обыкновенного куба, отсекаемая плоскостью, проходящей через концы трех ребер, имеющих общую вершину.

Берется какая -то вершина куба АBCDA1B1C1D1, например, А, и проводится сечение через точки В, D и А1, у пирамиды А1BDA все трехгранные углы при вершинах "основания" A1BD соответствуют условию задачи. В самом деле, рассмотрим, например, вершину D. Треугольники ADB и ADA1 - равноберенные прямоугольние, поэтому углы АDB и ADA1 равны 45 градусов. Что же касается двугранного угла между плоскостями  АDB и ADA1, то это - двугранный угол между гранями куба :), то есть он равен 90 градусам. 

Поэтому трехгранный угол при вершине D пирамиды А1BDA удовлетворяет условию задачи. По условию задачи, нужно найти угол A1DB, но он очевидно равен 60 градусам, поскольку треугольник A1DB равносторонний.

4,7(57 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ