PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
Я не знаю, как точно передать свои мысли, но постараюсь передать свое понимание данного вопроса, как могу))) Так вот, функции син., кос., тг., кт., непосредственно связаны с углами, т.е они выражают числовое значение того или иного угла. Поэтому, когда вычисляют числовое значение того или иного угла, с давних пор уже, еще со времен, когда возникли сами понятия синус, косинус и т.п берут единичную окружность, проводят в ней перпендикулярные диаметры, и для облегчения вычислений, берут четвертую часть данной окружности, соединяют концы сторон данного прямого угла—получается прямоугольный треугольник. А между углами прямоугольного треугольника и тригонометрическими функциями есть прямая зависимость, т.е чем больше/меньше тот или иной угол, тем больше/меньше тригонометрическая функция. А связь между углом и его противолежащей стороной простая: при возрастании/убывании угла возрастает/убывает и ее противолежащая сторона. А т.к между тригонометрическими функциями и углами, между углами и сторонами существует прямая зависимость, то мы вправе утверждать, что между тригонометрическими функциями острого угла и сторонами прямоугольного треугольника существует прямая зависимость