Точка М не лежит в плоскости параллелограмма ABCD. Она образует с точками С,D - треугольник MCD, с основанием CD По условию прямая (C'D'), проходит через середины отрезков MC и MD. А это как раз боковые стороны треугольника MCD. Значит C'D' - средняя линия треугольника MCD , следовательно параллельна основанию CD. В параллелограмме противолежащие стороны попарно параллельны, тогда AB || CD , но CD || C'D'. Значит и AB || C'D' ДОКАЗАНО, что прямая, содержащая середины отрезков MC и MD параллельна прямой AB
1. Прямая, проходящая через середины сторон AB и CD является средней линией трапеции, она параллельна основаниям ВС и AD. По признаку параллельности прямой и плоскости, если прямая параллельна AD, то она параллельна и плоскости α. 2. Если через прямую параллельную плоскости проходит другая плоскость и пересекает первую, то линия пересечения параллельна данной прямой. ЕС || Е1С1, тогда Δ В1Е1С1 подобен ΔВЕС с коэффициентом подобия 3/8 (т к C1E1:CE=3:8). тогда ВС1:ВС=3/8, ВС1=ВС* 3/8=10,5 см. 3. Прямая, проходящая через середины AE и BE является средней линией треугольника АВЕ, она параллельна АВ, в свою очередь АВ||CD по свойству параллелограмма, тогда если две прямые параллельны третьей, то они параллельны между собой, значит прямая, проходящая через середины AE и BE, параллельна прямой CD.
Объяснение:
Дано:
Δ ABC ----- равнобедренный.
∠ 1 ------ ?° в 2 раза больше ∠ 2.
Найти:
∠ 1; ∠ 2; ∠ 3.
Алгебраический решения № 1.
Пусть x° равен ∠ 2, тогда ∠ 1 будет равняться 2x°. Углы при основании равны (по свойству), поэтому ∠ 2 = ∠ 3 = x°. Сумма углов тр-ка 180°.
I этап. Составление математической модели:
x° + x° + 2x° = 180°
II этап. Работа с математической моделью:
2x + 2x = 180
4x = 180
x = 180 : 4
x = 45
III этап. ответ математической модели:
45° равен ∠ 2 и ∠ 3.
⇒ 2x = 2 * 45 = 90° равен ∠ 1.
Алгебраический решения № 2.
Пусть x° равен ∠ 2, тогда ∠ 1 будет равняться 2x°. Углы при основании равны (по свойству), поэтому ∠ 1 = ∠ 3 = 2x°. Сумма углов тр-ка 180°.
I этап. Составление математической модели:
x° + 2x° + 2x° = 180°
II этап. Работа с математической моделью:
3x + 2x = 180
5x = 180
x = 180 : 5
x = 36
III этап. ответ математической модели:
36° равен ∠ 2.
⇒ 2x = 2 * 36 = 72° равен ∠ 1 и ∠ 3.