ВОТ
Объяснение:
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
В ядре изотопа содержится 74 нейтрона и 41 73% протонов. Найти относительную атомную массу изотопа.A)137B)127C)131D)119В ядре изотопа содержится 74 нейтрона и 41 73% протонов. Найти относительную атомную массу изотопа.A)137B)127C)131D)119В ядре изотопа содержится 74 нейтрона и 41 73% протонов. Найти относительную атомную массу изотопа.A)137B)127C)131D)119В ядре изотопа содержится 74 нейтрона и 41 73% протонов. Найти относительную атомную массу изотопа.A)137B)127C)131D)119В ядре изотопа содержится 74 нейтрона и 41 73% протонов. Найти относительную атомную массу изотопа.A)137B)127C)131D)119
Объяснение:
Угол ACB = 60°, тогда угол CAB = 180 - 90 - 60 = 30°
Катет BC противолежит углу 30° ⇒ такой катет равен половине гипотенузы. BC = AC/2
BD - высота, опущенная на гипотенузу.
В прямоугольном треугольнике BCD:
СВD= 180 - 90 - 60 = 30°
BC - гипотенуза, СD u BD - катеты, причем СD противолежит углу 30° ⇒ CD = BC/2
По теореме Пифагора
BD² + CD² = BC²
4² + (BC/2)² = BC²
16 + BC²/4 = BC²
16 = 4BC²/4 - BC²/4
3BC²/4 = 16
3BC² = 64
BC² = 64/3
В прямоугольном треугольнике ABD:
AB - гипотенуза, AD u BD - катеты, причем BD противолежит углу 30° ⇒ AB = 2BD = 8
По теореме Пифагора
AB² + BC² = AC²
(2BD)² + 64/3 = AC²
(2 * 4)² + 64/3 = AC²
AC² = 64 + 64/3
AC² = 192/3 + 64/3
AC² = 256/3
AC=√(256/3)
AC = 16/√3
AC = 16√3 / 3 (cм)