Осевое сечение цилиндра представляет собой прямоугольник. Диагональ прямоугольника делит его на два равных прямоугольных треугольника. Известна гипотенуза такого треугольника с=L и острый угол α. Площадь прямоугольного треугольника по гипотенузе и острому углу: Sт=(с²·sin2α)/4, следовательно площадь прямоугольника: Sп=2Sт=(L²·sin2α)/2 - это ответ
1) Так как высота фонаря и расстояние от человека до столба + его тень равны 6, то получается прямоугольный равнобедренный треугольник. Бёдра треугольника это катеты. В таком случае если опустить перпендикулярную прямую к бедру от гипотенузы в любой точке, то отсечёная сторона бедра будет всегда равна перпендикуляру, то есть рост человека равен длине его тени, а значит рост человека равен 1,8 метра. 2) Так как кабель крепится на высоте 4 метра, то у нас получается прямоугольный треугольник с катетами 8 м и 15 надо найти гипотенузу. гипотенуза равна корень из (8^2+15^2)=17 Длина провода 17 м.
1) Так как высота фонаря и расстояние от человека до столба + его тень равны 6, то получается прямоугольный равнобедренный треугольник. Бёдра треугольника это катеты. В таком случае если опустить перпендикулярную прямую к бедру от гипотенузы в любой точке, то отсечёная сторона бедра будет всегда равна перпендикуляру, то есть рост человека равен длине его тени, а значит рост человека равен 1,8 метра. 2) Так как кабель крепится на высоте 4 метра, то у нас получается прямоугольный треугольник с катетами 8 м и 15 надо найти гипотенузу. гипотенуза равна корень из (8^2+15^2)=17 Длина провода 17 м.
Площадь прямоугольного треугольника по гипотенузе и острому углу:
Sт=(с²·sin2α)/4, следовательно площадь прямоугольника:
Sп=2Sт=(L²·sin2α)/2 - это ответ