1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Рисуем циркулем произвольную окружность удобного размера ( циркуль не сводим - бережем отмеренный радиус).Проводим линейкой отрезок через центр окружности О - это будущая биссектриса треугольника( она же высота и медиана, поскольку треугольник равнобедренный) Ставим иглу циркуля снова в центр окружности, отмечаем на окружности карандашом точку А на расстоянии R (радиус). Измеряем циркулем расстояние от точки А до отрезка - биссектрисы и высоты треугольника, ставим точку Д, откладываем это же расстояние до окружности ставим точку В.Соединяем точки А, Д и В прямой - это основание равнобедренного треугольника. Стороны могут быть радиусы - треугольник АОВ или ставим точку С и соединяем с точками А и В - треугольник АСВ.