Объяснение:
ozr99s6rea5z6eiz6zryzr6ozr6ryzd858fydy8u9vuv92d,uv9v2ru9ruh9xu9v2ruv9f2x9uvr22ubfc99uhrx9ubfxwvu92rx9fwuvu9w 9ugdw,you suov wdvu9dw,uv9fx2yg9rx2g9yxd29ugr2u9g1rgy91ry9ge1gx79xegu9x1r97g2ruv9x2ur9g9ygrx2yv9r2u9h2vou2royvfw0uh,9dwuv vu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr27h0rxxf9y2ry9gr2y9gvu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr2 2x9ugx7g0r7hr0uh0r27h0r70grch70cr2ug0r2u0grdhu0 is uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0 is is 0ubu0huh0cu0 0ubu0huh0cu0hcuh0 8hcr8hcrub0f2u0bt2u0b2ubc0 2tub0u0hr2 uh0r70hrcuhrcu9gr2c0uhrv0hurv28h
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см