MN - средняя линия треугольника АВС, значит MN║AC и MN = AC/2 = 42/2 = 21 см
NK- средняя линия треугольника BCD, значит NK║BD и NK = BD/2 = 38/2 = 19 см
КР - средняя линия треугольника ADC, значит КР║АС и КР = АС/2 = 42/2 = 21 см
РМ - средняя линия треугольника ABD, значит РМ║BD и РМ = BD/2 = 38/2 = 19 см
MNKP - параллелограмм, так его противоположные стороны равны.
Pmnkp = (MN + NK) · 2 = (21 + 19) · 2 = 40 · 2 = 80 cм
Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.
АВ=ВС - у ромба все стороны равны между собой.
Угол А = углу С - как противоположные углы ромба.
Значит тр-ки равны по гипотенузе и острому углу.
В равных тр-ках соответственные стороны равны, т. е. ВК=ВМ. АК=МС
2) Теперь рассмотрим тр-ки КВД и ДВМ.
Они прямоугольные, ВД - общая сторона.
ВК=ВМ из п. 1. Значит тр-ки равны по гипотенузе и катету.
Отсюда КД=ДМ. А против равных сторон в равных тр-ках лежать равные углы, т. е. угол КВД=углуДВМ. Вывод ВД - луч, который разделил угол КВД на два равных угла, т. е. ВД-биссектриса, ч. т. д.