MO - средняя линия △BCA (BM=MC по условию; AO=OC т.к. диагонали параллелограмма точкой пересечения делятся пополам)
MO || AB (средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине.)
Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки (теорема Фалеса).
AB || TP || MO AP=PO (по условию) BT=TM (по теореме Фалеса)
Проще всего представить треугольник АВС равнобедренным с основанием в 10 см и высотой в 5 см. Боковые стороны равны по 5√2 см. Тогда его площадь соответствует заданию: S = (1/2)*10*5 = 25 см². Углы при основании равны 45 градусов, при вершине - 90 градусов. По заданию АР = (4/5)*5√2 = 4√2 см. PB = (1/5)*5√2 = √2 см. BQ = AP = 4√2 см, QC = PB = √2 см. RC = (4/5)*10 = 8 см, AR = 10 - 8 = 2 см. Теперь можно определить длины сторон искомого треугольника PQR. PQ = √(√2)²+(4√2)²) = √(2+32) = √34 ≈ 5,83095189 см. PR = √(2²+(4√2)²-2*2*4√2*cos45°) = √20 = 2√5 ≈ 4,472136 см. RQ = √((√2)²+8²-2*√2*8*cos45°) = √50 ≈ 7,0710678 см. Теперь по формуле Герона находим площадь треугольника PQR. S = √(p(p-a)(p-b)(p-c)). где р - полупериметр, р = 8,6870778 см. Подставив данные, получаем S = 13 см².
2.Сумма углов треугольников=180 градусов