№1: . №2: .
Объяснение:№1.
Пусть , тогда - секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна .
, по условию.
и - односторонние углы
№2.
Обозначим данные прямые буквами
Пусть - секущая прямых и
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и - накрест лежащие при пересечении и секущей , однако .
и - не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна ".
Рассмотрим углы, образовавшиеся при пересечении прямых и
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых и .
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
168 : 2 = 84°