М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ignat20032612
Ignat20032612
13.08.2021 09:42 •  Геометрия

Сторона ас треугольника авс проходит через центр описанной около него окружности. найдите угол с, если угол а = 81

👇
Ответ:
Тк АС-диаметр => угол В 90 градусов
угол С=180-90-81=9 градусов
4,4(46 оценок)
Ответ:
zska25
zska25
13.08.2021
Если сторона треугольника, вписанного в окружность, совпадает с диаметром (проходит через центр окружности), то это значит, что треугольник прямоугольный. Из этого делаем вывод, что треугольник АВС - прямоугольный, а угол В - прямой.
Исходя из этого: угол С =90-угол А= 90-81=9(т.к. сумма непрямых углов в прямоугольном треугольнике равна 90)
ответ: 9 градусов
4,4(15 оценок)
Открыть все ответы
Ответ:
missislera2017
missislera2017
13.08.2021

Даны : А(2,1,0), М(3,-2,1), N(2,-3,0).


Находим координаты направляющего вектора прямой NM:

NM: (1; 1; 1).

Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :

n = (A; B; C). То есть, A = 1, B = 1, C = 1.

Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:

A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.

Подставляем данные -

α: 1(x -2) + 1(y - 1) + 1z = x + y + z - 3 = 0.


ответ: уравнение плоскости α: x + y + z - 3 = 0.

4,5(88 оценок)
Ответ:
zeIenkrist
zeIenkrist
13.08.2021

Даны : А(2,1,0), М(3,-2,1), N(2,-3,0).


Находим координаты направляющего вектора прямой NM:

NM: (1; 1; 1).

Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :

n = (A; B; C). То есть, A = 1, B = 1, C = 1.

Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:

A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.

Подставляем данные -

α: 1(x -2) + 1(y - 1) + 1z = x + y + z - 3 = 0.


ответ: уравнение плоскости α: x + y + z - 3 = 0.

4,4(57 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ