Дві прямі на площині можуть мати спільну точку або не мати спільних точок. Дві прямі, які мають спільну точку, називаються прямими, що перетинаються.
Означення. Дві прямі, які лежать в одній площині і не перетинаються, називаються паралельними.
Паралельність прямих позначається знаком . Паралельність прямих а і b записується так: .
Аксіома паралельних прямих
Через точку, яка не лежить на даній прямій, можна провести в площині єдину пряму, паралельну даній прямій.
Нехай прямі а і b перетинаються третьою прямою с, яка називається січною. Тоді утворюється вісім кутів, які мають спеціальні назви: кути 3, 4, 5, 6 – внутрішні, кути 1, 2, 7, 8 – зовнішні.
Пари кутів 1 і 5, 2 і 6, 3 і 7, 4 і 8 називаються відповідними, пари кутів 3 і 6, 4 і 5 – внутрішніми різносторонніми, пари кутів 1 і 8, 2 і 7 – зовнішніми різносторонніми. Пари кутів 3 і 5, 4 і 6 називаються, 1 і 7, 2 і 8 – зовнішніми односторонніми.
Якщо дві паралельні прямі а і b перетнуті прямою с, то:
внутрішні різносторонні кути ріні, тобто ;
сума внутрішніх односторонніх кутів дорівнює 180°, тобто , ;
відповідні кути рівні, тобто ;
зовнішні різносторонні кути рівні, тобто ;
сума зовнішніх односторонніх кутів дорівнює 180°, тобто .
Изучение строения Земли необходимо, во-первых, для геологов. Они ищут полезные ископаемые. Во-вторых, для сейсмологов, они определяют места возможных оползней, землетрясений и т.д. Кроме того, это необходимо для выбора места для строительства или строительства домов. Например, в местах повышенной сейсмологической активности дома необходимо строить более прочные.
Также изучение строения Земли необходимо географом, для того, чтобы лучше понять Землю, изучив не только ее оболочки, но и их взаимодействие.
изучения строения Земли такие:
Это изучение обнаженных горных пород, в местах, где они выходят на поверхность.
Бурение скважин и шахт или изучение уже существующих.
Геофизическими методами, изучая распространение сейсмологических волн.
Также косвенными методами, изучая строение метеоритов и информацию, которую получают из космоса с спутников.
Считаем, сколько всего частей составляют углы:
4+3+2=9 (частей)
Зная, что сумма углов Δ равна 180°, вычисляем, чему равна одна часть:
180 : 9 = 20 °
Самый большой угол состоит из 4 частей, вычисляем его градусную меру:
20 * 4 = 80° - больший из углов
ответ 80°
Задача 2 решается точно так же:
5+3+1 = 9 (частей)
180 : 9 = 20° (одна часть)
20 * 5 = 100° - больший из углов
ответ: 100°