Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
MC=MA=MB=4 СМ
AB=6 СМ
Найти:
MN- ?
Решение
1) Соединяем все точки, чтобы получить правильную пирамииду MABC.
Затем проводим из точки M перпендикуляр MN на плоскость ABC,который нам нужно найти.
2) Описываем окружность у тр. ABC. Так как он правильный, то точка N становится центром этой окружности.
Следовательно NA=NB=NC= R(радиусу окр)
3) ФОРМУЛА РАДИУСА: R=a*(корень из->)3/3
Решаем: R=6*(корень из ->)3/3 = 2(корень из ->)3 (см)
4)Так как треугольник AOM прямоугольнвй, то находим MN :
По теореме Пифагора : c^2=a^2+b^2
MN= (корень из ->)(AM^2+AN^2)= (корень из ->) (16-12)= (корень из ->)=2 (cм)
ответ: MN= 2 см.
Сорян, не могу сфоткать рисунок, думаю ,и без этого более менее понятно. Такая в общем там пирамида получается и AOM- c прямым углом.