Б.) 52/4=13 см сторона ромба10:2=5 см половина диагонали ромба13*13=169 квадрат стороны 5*5=25 квадрат половины диагонали169-25=144 квадрат половины другой диагоналиКорень из 144 равен 12 см - половина второй диагонали12*2=24 см вторая диагональ
А.) А) треугольник АОВ прямоугольный, и АО = одна вторая АС, ВО = одна вторая ВD. Значит АО = 3дм а ВО = 4дм. По теореме Пифагора АВ = корень квадратный из 3 во второй степени + 4 во второй степени = корень квадратный из 9 + 16 = корень квадратный из 25 = 5дм.ответ: 25дм
Объяснение:
2. ∠BOC=116°
4. ∠AOD=30°, ∠DOB=150°
6. подумаю, дополню ответ
8. применима теорема смежных и вертикальных углов
Сумма смежных углов равна 180°
Объяснение:
2. ∠EOD=∠FOB=32°
180-32-32=116
4. ∠AOD+∠AOC=180°. так как к ним добавляется ∠COB и вместе 3 угла составляют 210° легко определить чему равен ∠COB
210-180=30°, ∠COB=30° он же равен углу ∠AOD , значит ∠AOD=30°,
таким образом находим ∠AOC, 180-30=150°, ∠AOC=∠DOB=150°
8. ∠1+∠А=180°
∠А+∠BAC=180°
∠C+∠BCA=180°
∠C+∠2=180°
∠C=∠ACD, ∠BAC=∠BCA, можно смело утверждать что ∠BAC+∠ACD=180°
Сторона BC треугольника ABC(AB=13,BC=15,AC=14) лежит в плоскости альфа, расстояние от точки А до плоскости альфа равно 7. Определите расстояние от точек B1 и C1 до плоскости альфа, где BB1 и CC1 высоты треугольника ABC.
---.---.----. ---.---.----. ---.---.----. ---.---.----. ---.---.----. ---.---.----. ---.---.----. ---.---.----. --(task/24621882)
рисунок в прикрепленном файле
схема решения :
1. Доказать, что треугольник ABC остроугольный ; тем самым доказывается , что точки B1 и C1 ( основания высот) лежат на сторонах AC и AB соответственно .
2. Вычислить площадь треугольника по формуле Герона.
3.Определить высоты BB₁ и CC₁ треугольника ABC( BB₁⊥AC,CC₁ ⊥AB).
4. Вычислить отрезки CB₁ и BC₁ .
5. Вычислить расстояния от точек B₁ и C₁ до плоскости α
(C₁C₂ ⊥ α , B₁B₂ ⊥ α)
1.
BC² < AB² +AC² значит треугольник остроугольный
15² < 13² +14² || 225 < 169 + 196 = 365 ||
---
2.
S =√p(p-a)(p-b)(p-c) ,где p =(a+b+c) /2 = (15+14+13)/2 =21(полупериметр)
S =√21(21-15)(21-14)(21-13) = √21*6*7*8= √7*3*6*7*2*4 = 7*6*2=84.
---
3.
S =AC* BB₁ /2 ⇒BB₁ = 2S/ AC
BB₁=2*84/14 =12.
S =AB*CC₁ /2⇒CC₁ =2S/AB
CC₁ =2*84/13 =168/13 ;
---
4.
из ΔCB₁B :
CB₁ =√(BC² - BB₁²) =√(15² - 12²) =9.
* * *√(15 -12)(15+12) =√(3*27) или √(15² - 12²) =√(225 - 144)=√81 =9 * * *
из ΔВC₁С :
ВC₁ =√(BC² -СC₁²) =√(15² - (168/13)²) =√(15 -168/13)(15 +168/13) =
√(27/13)*(363/13) =(1/13)√(3*9 *3*121) =99/13 .
---
5.
ΔB₁B₂C ~ ΔADC ;
B₁B₂ /AD = CB₁ /CA ⇒ B₁B₂= (CB₁ /CA)*AD = (9/14)*7 = 4,5.
--
ΔC₁C₂B ~ ΔADB ;
C₁C₂/AD = BC₁/BA ⇒ C₁C₂ =(BC₁/BA)*AD =(99/13²)*7 =693 /169.≈4,1
ответ: 4,5 ; 693/169 ≈4,1.