Для этого надо найти длины сторон по координатам вершин: A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004. ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6. АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004. Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна: ha = 2√(p(p-a)(p-b)(p-c)) / a. a b c p 2p S 8.5440037 6 8.5440037 11.544004 23.08800749 24 ha hb hc 5.61798 8 5.61798
Решение умных людей ) не мое , но все же 1. строим тр-к авс с углами альфа (вершина а) и бета (вершина с) при основании. 2. строим биссектрисы углов а и с. 3. радиусом св с центром в точке с проводим полуокружность с пересечением стороны ас в точке d. дугу dв откладываем вправо от точки в и еще откладываем половину дуги угла бета. получили точку м. угол dсм равен 2,5 бета. 4. радиусом сm, с центром в т. а проводим дугу угла альфа. 5. измеряем дугу половины угла альфа. 6. эту дугу откладываем по дуге угла мсb от точки м в сторону точки в. получили точку n. 7. угол acn = 2,5 бета - 0,5 альфа.
a = 4:2
a = 2(см)
P = 4a
P = 4x2
P = 8(см)
ответ: Р = 8 см