1. На прямой "а" откладываем отрезок АВ, равный отрезку PQ. 2. В точке А строим угол, равный данному, со стороной, лежащей на прямой "а". 3. В точке В строим угол, равный данному, со стороной, лежащей на прямой "а". 4. В точке пересечения сторон построенных углов получаем точку С. Треугольник АВС построен.
Построение угла, равного данному: Проводим окружность с центром в точке М - вершине данного угла. Получим точки К и Н на сторонах данного нам угла. Проводим окружность этого же радиуса (МН) с центром в точке А. Получим точку К' на стороне АВ. Раствором циркуля, равным расстоянию КН из точки К' проведем дугу радиуса КН и получим точку H'. Через точки А и Н' проведем прямую - угол Н'АК' равен данному нам углу. Проводим окружность радиуса МН с центром в точке В. Получим точку К" на стороне АВ. Раствором циркуля, равным расстоянию КН из точки К" проведем дугу радиуса КН и получим точку H". Через точки B и Н" проведем прямую - угол Н"BК" равен данному нам углу.
Построим равнобедренный треугольник АВС с основанием АВ. Проведем высоты АД и ВЕ. Рассмотрим треугольники ACД и BCЕ. AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты). Сумма углов треугольника равна 180 градусам. В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов. В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов. Значит: углы CAД=CBЕ. Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам). Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.
Сумму углов выпуклого многоугольника находят по формуле
N=180•(n-2)
Если в данном многоугольнике n- углов, то 3 угла по 100°, остальных углов меньше на 3, т.е. их n-3 величиной по 160°
Тогда N= 3•100° +160°(n-3)
180°n-360°=300+160°n-480°
20°•n=660°-480°
n=180°:20°=9 ( сторон)