ответ: 20 см
Решение: смотри рисунок.
Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
Периметр параллелограмма =KM+MA+AN+NK=BM+MA+AN+NC=BA+AC=10+10=20 (см)
Вектор OA = (0,0,2)
Вектор OC = (?,?,0)
Но известно, что AC = OC - OA = k*OB
или
OC = k*OB+OA
Надо найти такой множитель k, чтобы OA+kBO имел нулевую координату z.
Достаточно рассмотреть z координаты этой суммы:
2 - k*2 = 0
или
k*2 = 2
k = 1.
Найдем теперь координаты x, y вектора OC
по х: 0+1*1 = 1
по y: 0+1*1 = 1
То есть точка C имеет координаты (1,1,0)