Пусть ABCD некий прямоугольник, где противолежащие стороны и углы равны, тогда AB=CD и AC=BD, по условию нам известно что некая сторона теугольника равна 40 см, тогда AB=CD= 40 см. Мы знаем что при проведение диагоналей СB и DA прямоугольник делятся на два равных по 1-ому признаку равнобедренных прямоугольных прямоугольника. По теореме Пифагора мы сможем найти сторону AB:
A2 + B2= C2 (квадрат гипотенузы равен сумме квадратов катетов)
402+ B2= 412
1600+ B2=1681
B2=1681-1600
B2=81
B=√81
B=9
так как AB и CD равны как противолежащие стороны прямоугольник, то AB=CD=9 см.
Найдём площадь прямоугольника по формуле: S=ab; S= 40x9=360 см2
в треугольнике чертим высоту h,
дальше решаем:
h/sin60=9/sin90
h=9*sin60 sin60=Sqrt[3]/2
h=4,5*Sqrt[3]
дальше рассматриваем второй треугольник (высота делит треугольник на 2 треугольника,первый мы уже рассмотрели):
находим угол у основания( 60-первый у основания,ишем второй):
неизвестный угол обозначим alpha:
4,5*Sqrt[3]/sin[alpha]=21/sin[90]
alpha=21,79
дальше рассматриваем первоначальный треугольник и находим оставшийся третий угол:
180-60-21,79=98,21
все углы известны,находим основание:
обозначим основание c:
c/sin [98,21]=21/sin[60]
c*sin[60]=21*sin [98,21]
c=(21*sin [98,21])/sin[60]
c=24
осталось найти площадь:
1/2*24*4,5*Sqrt[3]=93,53
4*49=196