чертежи в приложении
задача 1
Боковая сторона равна 11 см.
Большее основание равно 15 см.
Меньшее основание равно 5 см.
Объяснение:
пусть ВС -меньшее основание =х, тогда АД=3х и АВ=СД=х-+6
периметр -это сумма длин всех сторон ,значит:
АВ+ВС+СД+АД=Р
(х+6)+х+(х+6)+3х=42
6х=30
х=5 и=ВС , тогда АД=3х=15, АВ=СД=х+6=5+6=11
Проверка (для себя): 11+5+11+15=42
задача 2
43 см
Объяснение: чертеж в приложении
1) рассм четырехугольник NBCD - параллелограмм , тк ВС||ND (ведь основания трапеции параллельны ), BN||CD (по усл). тогда ND =ВС=4 и
2) СД=BN (как стороны параллелограмма )
3) Р трапеции =АВ+ВС+СД+АД= АВ+ВС+BN+AN+ND=АВ+ВС+BN+AN+BC=
=АВ+BN+AN+2*BC=Pтреуг+2*ВС=35+2*4=43
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid
1) Угол, меньший 90°, называется острым. Сумма двух острых углов меньше 180°, значит, оба смежных угла не могут быть острыми.
1) Угол, меньший 90°, называется острым. Сумма двух острых углов меньше 180°, значит, оба смежных угла не могут быть острыми.2) Угол, больший 90° и меньший 180°, называется тупым. Сумма двух тупых углов больше 180°, значит, оба смежных угла не могут быть тупыми.
1) Угол, меньший 90°, называется острым. Сумма двух острых углов меньше 180°, значит, оба смежных угла не могут быть острыми.2) Угол, больший 90° и меньший 180°, называется тупым. Сумма двух тупых углов больше 180°, значит, оба смежных угла не могут быть тупыми.3) Угол, равный 90°, называется прямым. Сумма двух прямых углов равна 180°, значит, оба смежных угла могут быть
Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3. Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√3).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Sполн=а²(2+√3)+2*AD*BH=а²(2+√3)+4а² = а²(6+√3).