У этих треугольников общий угол при вершине Q. Кроме того их вписанные углы ACD и ABD опираются на одну и туже дугу - то есть равны. Таким образом треугольники подобны по двум равным углам: Q = Q и B = C
В равнобедренном треугольнике углы при основании равны, значит <ABC=<ACB=(180-<BAC)/2=(180-80)/2=50° <АВМ=<АВС-<МВС=50-30=20° <АСМ=<АСВ-<МСВ=50-10=40° Рассмотрим треугольник ВМС: <ВМС=180-<МВС-<МСВ=180-30-10=140°. По теореме синусов МС/sin 30=BC/ sin 140 MC=BC*sin 30/sin 140=BC/2sin (180-40)=BC/2sin 40 Если в треугольнике АВС из вершины А опустить высоту АН на основание ВС, то она же будет и медиана и биссектриса. Из полученного треугольника АНС (<НАС=80/2=40°, <АНС=90°, НС=ВС/2) по теореме синусов НС/sin 40=АC/ sin 90 АC=BC/2sin 40 Получается, что МС=АС, значит треугольник АМС - равнобедренный <САМ=<АМС=(180-<ACM)/2=(180-40)/2=70°.
параллелограмм АВСД, АК/КВ=2/1=2у/у, АЛ/ЛД=1/3=х/3х, АД=х+3х=4х=ВС, ВМ/МС=1/1 или 2х/2х, из точки Л проводим линию ЛЕ параллельную АВ на ВС, АЛ=ВЕ=х=ЕМ, треугольник ВЛМ ЛЕ-медиана которая делит его на два равновеликих треугольника, S ВЛЕ= S ЕЛМ =S, площадь ВЛМ=S ВЛЕ + S ЕЛМ =2S, АВ=АК+КВ=у+2у=3у, АВМЛ-параллелограм ЛВ-диагональ, площ.АВЛ=площВЛЕ= S, из точки Л проводим высоту ЛТ на АВ, площ.АВЛ=1/2*АВ*ЛТ=1/2*3у*ЛТ, площ.КВЛ=1/2*ВК*ЛТ=1/2*у*ЛТ, площАВЛ/площКВЛ=(1/2*3у*ЛТ)/(1/2*у*ЛТ)=3/1, 3*площ.КВЛ=площАВЛ=S, площКВЛ=S/3, площКВЛ/площВЛМ=(S/3)/2S=1/6