ответ: Дано:
∆АВС - рівнобедрений; АС - основа; BD - бісектриса;
М є BD. АВ ‖ ME; ВС ‖ MF. Довести: DE = DF.
Доведения:
За умовою ∆АВС - рівнобедрений (АВ = ВС).
За умовою BD - бісектриса.
За властивістю piвнобедреного трикутника маємо: BD - висота.
BD ┴ АС, тобто ∟MDE = ∟MDF = 90°.
За властивістю кутів р1внобедреного трикутника маємо: ∟A = ∟C.
За умовою АВ ‖ ME; AC - січна, тоді за ознакою паралельності прямих маємо: ∟BAC = ∟MEC (відповідні).
Аналогічно: MF ‖ ВС; АС - січна, ∟BCA = ∟MFA.
Якщо ∟A = ∟C; ∟A = ∟MED; ∟C = ∟MFD, тоді ∟MEF = ∟MFE.
Тодф ∆EMF - рівнобедрений. MD - висота, тоді MD - медіана, отже DE = EF.
Доведено.
Объяснение:
Объёмы подобных фигур относятся как куб коэффициента подобия их линейных размеров. Данные фигуры НЕ подобны - имеют равные высоты.
Обозначим объём исходной призмы V, отсеченной – V1.
V1=H•S=H•a•h/2 , где Н - высота призмы, а – сторона, параллельная плоскости сечения, h- высота треугольника в основании отсеченной призмы.
а - средняя линия треугольника в основании исходной призмы.
2а- сторона, параллельная а, 2h- высота основания исходной призмы.
V=H•2a•2h/2 ⇒
V:V1=4
V=4•30=120