Дано: В треугольнике ABC угол B равен 20°, угол C равен 40°. Биссектриса AM равна 2.
Найти разность сторон BC и AB.
На стороне ВС отложим отрезок ВМ, равный АВ.
Треугольник АВМ равнобедренный, углы при основании равны
(180-20)/2 = 80 градусов.
Угол А = 180 - 20 - 40 = 120 градусов.
Отрезки АМ и АЕ равны по равенству углов ЕМА и АЕМ = 80 градусов.
Теперь переходим к треугольнику АЕС.
У него углы при основании равны по 40 градусов.
Значит, ЕС = АЕ, но так как АЕ равно АМ = 2, то и отрезок СМ, равный разности сторон АВ и ВС, равен 2.
ответ: разность сторон равна 2.
рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.
АВ+ВС+АС=40
т. к. АВ=АС, то 2АВ+ВС=40 (1)
треугольник АВМ:
АВ+ВМ+АМ=34
т. к. ВМ=0,5ВС, то АВ+0,5ВС+АМ=34
умножим обе части уравнения на 2:
2АВ+ВС+2АМ=68
2АВ+ВС=68-2АМ (2)
приравняем уравнения (1) и (2):
34=68-2АМ
2АМ=34
АМ=17 см