Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
Искомый отрезок лежит на средней линии трапеции, которая проходит через середины диагоналей. Боковые отрезки средней линии - средние линии треугольников, основанием которых является меньшее основание. Их два, каждый равен половине меньшего основания, а вместе - длине всего меньшего основания. Поэтому длина отрезка, соединяющего середины диагоналей трапеции, равна разности между средней линией трапеции и длиной меньшего основания. Средняя линия трапеции (9+4):2=6,5 Длина отрезка, соединяющего середины диагоналей трапеции 6,5-4=2,5 См. рисунок. ------ [email protected]
(х-20) - второй
(х-40) - третий
х + х-20 + х-40 = 180
3х - 60 = 180
3х = 180 + 60
3х = 240
х = 80° - первый угол
80 - 20 = 60° - второй
80 - 40 = 40° - третий