1.Пусть х -это меньший угол , тогда больший 4х
составляем уравнение
×+4×=90° (по свойству пр.уг. треугольника)
5×=90
×=18-меньший угол
4×=72 больший угол
2. смотрим на чертёж и видим что сторона КН в 2 раза меньше ТН т.к. 58÷2=29, значит по свойству пр.уг треугольника мы знаем, что напротив угла 30° лежит катетер равный половине гипотенузы. Исходя из данных можно понять что в нашем треугольнике угол 30° будет угол КТН
тогда вычислим угол КНТ
КНТ=90°-30°=60°(по свойству пр.уг треугольника)
угол КНт и угол ТНF смежные, значит их сумма равна 180°. исходя из этого можно вычислить угол THF
THF=180°-60°=120°
3.угол DOC смежный с углом BOC ,значит
DOC=180°-132°=48°
Поскольку ВD является биссектрисы прямого угла , то угол KBD =45°
тогда угол ВКО =180°-(45°+48°)=87°
тогда смежный ему угол АКО=180-87°=93°
угол ОСВ=180°-(45°+132°)= 3°
поскольку СК биссектриса то она поделилась угол ВСА пополам,значит ВСА=2×3=6°
тогда можем найти второй острый угол треугольника ВАС
уголВАС=90°-6°=84°
ОТВЕТ: УГОЛ ВАС=84°, УГОЛ ВСА=6°
Образующие AS = BS = 14 cм ⇒ треугольник SAB является равнобедренным с углом 90° при вершине, основанием AB, равным диаметру окружности основания конуса.
Высота (SO) конуса является высотой равнобедренного треугольника SAB, проведенной к основанию AB (а также медианой и биссектрисой) ⇒ SO делит угол при вершине треугольника SAB пополам ⇒ ∠ASO = ∠BSO = 45°
В прямоугольном треугольнике ASO:
∠ASO = 45°
∠AOS = 90°
∠SAO = 180 - 90 - 45 = 45 (°)
⇒ треугольник ASO является прямоугольным равнобедренным с основанием AS, боковыми сторонами AO = SO = r
Радиус окружности основания конуса равен высоте конуса.
Найдем AO через косинус угла SAO. Косинусом угла SAO является отнрошение прилежащего к нему катета AO к гипотенузе AS
AO
cos(SAO) = ---------------
AS
AO
cos(45°) = ---------------
14
AO 1
--------- = ----------
14 √2
AO * √2 = 14 * 1
AO = 14/√2
r = 14/√2 (см)
Площадь основания конуса равна:
S = π * r²
S = π * (14/√2)² = π * 196/2 = 98π ≈ 308 (cм²)