∠1= 150°; ∠2=30°.
Объяснение:
Задание.
Один из внешних односторонних углов при двух параллельных прямых и секущей на 60 градусов больше среднего арифметического. Найдите углы.
Решение.
Сумма внешних односторонних углов при двух параллельных прямых и секущей равна 180°.
Пусть ∠1= х и ∠2= у - внешние односторонние углы.
Тогда, согласно условию:
х + у = 180 - уравнение 1;
х - 90 = 60 - уравнение 2,
где 90 = (х+у)/2 = 180/2 - среднее арифметическое углов.
Из уравнения (2) находим:
х = 60+90 =150°.
Подставив полученное значение х в первое уравнение, находим у:
150+у=180
у = 180-150 =30°.
Проверка.
Среднее арифметическое углов = (150+30)/2 = 90°; и больший угол больше среднего арифметического углов на 150- 90=60°, что соответствует условию задачи.
ответ: ∠1= 150°; ∠2=30°.
ответ: 12 см
Объяснение: Полушар касается изнутри боковой поверхности конуса.
Нарисуем осевое сечение конуса – равнобедренный треугольник АВС с боковыми сторонами – образующей АВ, основанием – диаметром АС, высотой ВО, и вписанной полуокружностью с центром О и точкой касания с образующей Н.
Высота ВО делит этот треугольник на равные прямоугольные треугольники. По т.Пифагора радиус основания конуса АО= √(АВ²-ВО²)=√(25²-20²)=15. Тогда радиус полушара ОН- высота ⊿ ВОА. Высота прямоугольного треугольника, проведенная к гипотенузе, равна произведению катетов, делённому на гипотенузу. ОН=ВО•АО:АВ=20•15:25=12 см