М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Marmanril12
Marmanril12
24.03.2022 07:48 •  Геометрия

Известно, что ΔVUT подобен ΔZUS и коэффициент подобия k= 0,5.
1. Если US= 7, то UT=
.

2. Если TV= 15, то SZ=
.

👇
Открыть все ответы
Ответ:
borenka
borenka
24.03.2022

Построим сечение куба плоскостью проходящей через точки H (середина стороны DC), H1 (середина стороны D1C1) и M (середина отрезка CQ)

Соединим H с H1, продолжим отрезок HM до пересечения со стороной BC в точке K. Рассмотрев ΔBCD, видим, что отрезок HM проходит через середины стороны CD и высоты CQ, а следовательно KM является средней линией ΔBCD. Тогда K - середина стороны BC. Т.к. A1B1C1D1 || ABCD, то плоскость KHH1 пересекает их по параллельным прямым. Прямая параллельная KH и принадлежащая плоскости A1B1C1D1 и проходящая через точку H1 также будет средней линией K1H1, но в ΔC1B1D1.

Окончательно получаем в сечении прямоугольник KHH1K1.

Теперь построим сечение проходящее через точки Q, Q1 и D1

Проводим прямую через точки Q1 и D1 в плоскости A1B1C1D1 - это будет диагональ B1D1. Проводим прямую параллельную ей и принадлежащую плоскости ABCD и проходящую через точку Q - это будет диагональ BD. Окончательно получаем в сечении прямоугольник BDD1B1

BD || KH (KH - средняя линия ΔBCD)

BB1 || KK1 (KK1 - средняя линия квадрата BB1C1C)

BD пересекается с BB1 в точке B

KH пересекается с KK1 в точке K

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны ⇒ BDD1B1 || KHH1K1.



Дан куб авсда1б1с1д1. допустим q - центр грани абсд, q1- центр грани а1б1с1д1. доказать что плоскост
4,4(63 оценок)
Ответ:
ayratka2
ayratka2
24.03.2022
Допустим, прямая не пересекает плоскость бета, а параллельна ей. Тогда все точки этой прямой должны находиться на равном удалении от плоскости бета (иначе один из концов пряой приблизится к плоскости бета и пересечет ее) . Одна точка, точка пересечения прямой с плоскостью альфа, находится на том же расстоянии от плоскости бета, что и плоскость альфа. Следовательно все остальные точки прямой находятся на таком же расстоянии, т. е. лежат в плоскости альфа, значит вся прямая долна лежать в плоскости альфа. Но по условию прямая не лежит в плоскости альфа, а пересекает ее. Таким образом она не может быть параллельна плоскости бета и пересечется с ней.

2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a 
4,7(68 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ