Дотична пряма до кола в евклідовій геометрії на площині — пряма, що дотикається до кола тільки в одній точці та не містить внутрішніх точок кола. Грубо кажучи, це пряма, яка проходить через пару нескінченно близьких точок на колі. Дотичні прямі до кола застосовуються у багатьох геометричних побудовах і доведеннях. Так як, дотична пряма до кола є перпендикуляром до радіуса кола, проведеного в точку дотику, то зазвичай теореми в яких розглядаються дотичні прямі, часто використовують у формулюванні такі радіуси або ортогональні кола.
СО - высота h основания, сторона основания - а.
SД - высота боковой грани, ОД - перпендикуляр к стороне ВС основания.
Высота боковой грани SД = H / sin β.
Перпендикуляр ОД = Н / tg β.
Угол ОСВ = 30°, поэтому h = OC = 2ОД = 2Н / tg β.
Сторона основания а = h / cos 30° = 2H /( tg β*(√3/2)) = 4H /(tg β√3).
Площадь Sбок боковой поверхности заданной пирамиды равна:
Sбок = 2*(1/2)а*SД + (1/2)а*Н = аН/sin β + aH/2 = aH((1/sinβ) + (1/2)) =
= (4H²/(tg β√3))((1/sinβ) + (1/2)).