Будем использовать следующие значения для сторон треугольника АВС: АВ=с, ВС=а, СА=b и его углов:
<А=а, <В=b, <C=y (a, b, y : Альфа, Бэта, Гама.)
Дано:
а=4, b=5, c=6.
Найти: a, b, y -?
Пусть b - наибольшая сторона, b<a+c.
По теореме косинусов находим наибольший угол b,
[Не обязательно писать, для ориентира: Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.]
При основного тригонометрического тождества найдём Sin B
С теоремы синусов найдём углы треугольника:
Отсюда,
С таблиц находим градусную меру углов:
а≈41°
b≈57°
Тогда,
у≈82°
ответ: 41° 57° 82°
В равнобедренном треугольнике АВС высоты АН и ВК, проведенные к боковым сторонам ВС и АС соответственно, равны. Это равенство вытекает из равенства прямоугольных треугольников АВН и АВК по острому углу (<B=<A как углы при основании треугольника АВС) и гипотенузе (АВ - общая).
В прямоугольном треугольнике АВK
Sin(<BAC)=Sin(<BAK)=BK/AB.
Sin(<BAC) = √(1 - Cos²(<BAC)) = √(1 - 21/25) = 2/5 = 0,4.
В прямоугольном треугольнике АВH, так как АН=ВК,
Cos(<BAH) = AH/AB = BK/AB = Sin(<BAC) = 0,4.
ответ: Cos(<BAH) = 0,4.
Получились квадраты СКОН и CFO'E, стороны которых равны 9 и r соответственно.
Проведем O'H'║EH.
OO' = 9 + r
OH' = O'H' = 9 - r
Из треугольника OH'O' (∠OH'O' = 90°) по теореме Пифагора составим уравнение:
(OO')² = (OH')² + (O'H')²
(9 + r)² = (9 - r)² + (9 - r)²
81 + 18r + r² = 2(81 - 18r + r²)
81 + 18r + r² = 162 - 36r + 2r²
r² - 54r + 81 = 0
D/4 = 27² - 81 = 648
r = 27 + 18√2 или r = 27 - 18√2
В первом случае радиус маленькой окружности приблизительно равен 52,5, что невозможно по условию задачи, во втором ≠ 1,5.
ответ: 27 - 18√2