Пусть катеты будут х и у, медиана проводится к середине стороны, следовательно получаем систему уравнений x^2+0.25y^2 = 9 и y^2+0.25x^2 = 16. Складываем оба уравнения и получаем 1.25x^2+1.25y^2=25, т.е. x^2+y^2 = 20. Таким образом искомая гипотенуза равна √20 или
1.Основными геометрическими фигурами на плоскости являются точка и прямая. 2.Положение точки на каждом из лучей задается ее координатой. Чтобы отличить друг от друга координаты на этих лучах, условились ставить перед координатами на одном луче знак « + », а перед координатами на другом луче знак « — ». 3.В месте раздела плоскостей прерывается область интегрирования по площади и неопределенный интеграл вырождается в определенный. Разбиение разрывает непрерывную корреляцию между функцией и аргументами кривой, проходящей по обеим плоскостям, если вторая производная - не ноль.
Площади подобных многоугольников относятся как квадрат коэффициента подобия k² = S₂/S₁ = 10/9 k = √(10/9) = √10/3 Периметры подобных многоугольников относятся как коэффициент подобия k = P₂/P₁ = √10/3 P₂ = P₁*√10/3 И по условию разность периметров равна 10 см P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10 P₁(√10/3 - 1) = 10 P₁ = 10/(√10/3 - 1) Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1) P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см