Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)
2) Проведём из угла при основании высоту к боковой стороне. По свойству равнобедренного треугольника она будет и медианой. Рассмотрим полученный прямоугольный треугольник. По свойству прямоугольного треугольника, катет, лежащий против угла в 30 градусов равен половине гипотенузы. По теореме Пифагора имеем:
х²=(½х)²+2²
х²-¼х²=4
¾х²=4
х²=4×4/3
х=4/кореньиз3
Боковая сторона равна 4/кореньиз3, а высота к ней 2/кореньиз3.
3) Площадь треугольника S=½a×h=½×2/кореньиз3 × 4/кореньиз3 =½×8/3=4/3 (см²)
2. Пусть одна часть будет а, тогда одна сторона будет 5а, другая 7а. Р=2×(5а+7а)=144. 2×12а=144
24а=144
а=6
Тогда одна сторона равна 6×5=30, а другая 6×7=42. Тогда S=30×42=1260
3. S=a×h
12×На=36
На=3 (см)
9×Нb=36
Нb=4