Если я правильно поняла, то вписанный и центральный угол лежат на одной и той же дуге. Значит, рассмотри для начала центральный: этот угол равен 88*, а по теореме градусная мера центрального угла равна гр. мере дуги, на которую он опирается. Отсюда дуга будет равна 88*:
AC=88*.
Найдём теперь вписанный угол. В теореме о вписанном угле сказано, что он равен половине дуги, на которую опирается. Опирается он на дугу AC, значит, чтобы найти угол ABC, нужно AC разделить на 2:
AC/2=88/2= вычислишь сам/а.
Сложного ничего нет.
боковые грани --равносторонние треугольники (сторона (а)),
основание высоты пирамиды --точка пересечения диагоналей квадрата.
линейный угол двугранного угла --это угол между перпендикулярами, проведенными к ребру двугранного угла,
в боковой грани это будет высота равностороннего треугольника,
h = a*sin(60°) = a√3 / 2
в основании это будет половина стороны квадрата, из получившегося
прямоугольного треугольника со вторым катетом-высотой пирамиды по определению косинуса, получим:
cos(x) = (a/2) : (a√3 / 2) = a : (a√3)
x = arccos(1 / √3)