Дано:
тр АВС (уг С=90)
АС = 16 см
ВС = 12 см
АВ = 20 см
Найти:
а) косинус меньшего угла
б) сумму квадратов косинусов острых углов
а) по свойству соотношения сторон и углов треугольника, против меньшей стороны лежит меньший угол, а значит меньшим будет угол, лежащий против стороны 12 см, по условию, следовательно, это угол А.
cos A = AC / AB; cos A = 4/5 = 0.8
б) Есть св-во - оно же основное геометрическое тождество, сумма квадратов косинусов острых углов прямоугольного треугольника равна единице, но вы похоже этого ещё не изучали, посему надо найти оставшийся косинус угла В и найти сумму квадратов косинусов вычислением, приступим:
cos B = CB / AB; cos B = 12/20 = 3/5 = 0.6
cos²A +cos²B = 0.8²+0.6²=0.64+0.36=1
Для того что бы вычислить радиус круга необходимо знать его длину или площадь. Если нам известа одна из указаннх величин, для нас не составит труда вычислить радиус круга.
Радиус круга рассчитывается по следующим формулам:
Если нам известна длина:
Формула для расчета радиуса круга через его длину:
R=P/(2π)
Вычислить радиус круга через его длину
Если нам известна площадь:
Формула для расчета радиус круга через площадь:
R=√S/π
Вычислить радиус круга через площадь
Если нам известен диаметр:
Формула для расчета радиус круга через диаметр:
R=D/2
Вычислить радиус круга через диаметр
Где R - радиус круга, S – площадь круга, P – длина круга, D - диаметр, π – число Пи которое всегда примерно равно 3,14.
Объяснение:
И ещё.
Как вычислить площадь ( S ) круга, зная только его диаметр (D)
Например, диаметр круга = 10 сантиметров.
То радиус ( R ). естественно будет равен 5 см. ( половину диаметра )
Есть " пи " = 3,14 - это математическая постоянная, выражающая отношение окружности к длине её диаметра.
Есть формула определения площади круга ( S ):
S круга = пи х R в квадрате.
Подставляем данные в формулу:
S круга = 3,14 х ( 5 х 5 ) = 3,14 х 25 см = 78,5 квадратных см.
Высота параллелепипеда равна 100/25=4 дм.
Площадь двух оснований равна 2·7·24=336 дм².
Площадь боковой поверхности равна (24·2+7·2)·4=672·4=2688 дм².
Площадь полной поверхности равна 336+2688=3024 дм².