А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
Объяснение:
KDN равнобедренный, DNK=NKD=NKM/2
DNK+NKM=90 <=> 3*DNK=90 <=> DNK=30
Катет против угла 30 равен половине гипотенузы, MK=NK/2
Биссектриса делит противоположную сторону в отношении, равном отношению прилежащих сторон.
MD/DN=MK/NK =1/2 => MN= 3*MD