ответ короч
Объяснение:
Дано:
∆АВС - прямокутний (∟В = 90°).
∆А1В1С1 - прямокутний (∟В1 = 90°).
ВС = B1C1; BN - бісектриса ∟АВС;
B1N1 - бісектриса ∆А1В1С1.
Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою ∟ABC = 90° i BN - бісектриса ∟ABC.
За означенням бкектриси кута маємо: ∟ABN = ∟NBC = 90° : 2 = 45°.
Аналогічно B1N1 - бісектриса ∟А1В1С1, тоді ∟A1B1N1 = ∟N1B1C1 = 45°.
Розглянемо ∆NBC i ∆N1B1C1:
1) BN = B1N1 (за умовою);
2) ВС = В1С1 (за умовою);
3) ∟NBC = ∟N1B1C1 = 45°.
За I ознакою piвностi трикутників маємо:
∆NВС = ∆N1B1C1. Звідси ∟C = ∟С1.
Розглянемо ∆АВС i ∆А1В1С1:
1) ∟ABC = ∟А1В1С1 = 90°;
2) ВС = B1C1;
3) ∟C = ∟С1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.
Задачу можно решить с простейшим рисунком, советую сделать его.
Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М.
Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.