Сначала найдем ∠С= 180 - ∠A - ∠B= 180-23°10’- 41°15’= 116°35’ По теореме синусов : а/sin A= b/sin B= c/ sin C Отсюда: a/ sin 23°10’= 10/ sin 116°35’ (значения синусов можно узнать из таблицы Брадиса или посчитать на калькуляторе) а= (0,39/0,894)*10 = 0,436*10 = 4,36 = 4,4 По аналогичной схеме найдите b.
Чтобы найти cos необходимо воспользоваться теоремой косинусов: AB^2=BC^2+CA^2 - 2BC*CA*cos∠C (квадрат стороны равен сумме квадратов двух других сторон ) Отсюда: cos∠C= (BC^2+CA^2 - AC^2)/(2*BC*CA)
По предыдущей формуле найдите стороны, после рассчитайте косинусы углов, которые нужно найти.
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².