Коэффициент подобия называется отношение любых соответственных линейных размеров первой фигуры к линейным размерам второй фигуры, находящимся против одинаковых углов.
А так как площадь треугольника равна произведение сторон АВ, ВС, и синуса угла между ними, а А1В1 = к * АВ, В1С1 = к * ВС, к коэффициент подобия,то :
S A1B1C1 = A1B1 * B1C1 * sin <(A1B1,B1C1) = 81 (cм2) = к* АВ * к * ВС * sin<(AB,BC) = k^2*S ABC
S ABC = AB * BC * sin < (AB,BC)=25(cм2).
к^2 = S A1B1C1/ S ABC = 81/25, k = 9/5 = 1,8
^ - степень
/ - деление
R = 10см; R/h = 1/2
Объяснение:
Площадь полной поверхности цилиндра
S = 2πR² + 2πRh = 2πR(R + h) = 1884
Сокращаем на 2π = 6,28 и получаем R(R + h) =300
или R² + Rh = 300
Обозначим х = R и у = Rh
Тогда у = 300 - х²
При условии максимального объёма цилиндра
V = πR²h = π · R · Rh = π · x · y, то есть следует искать максимум функции
f(x) = x·у
f(x) = х · (300 - х²)
f(x) = 300x - x³
f'(x) = 300 - 3x²
f'(x) = 0
300 - 3x² = 0
x² = 100
x = 10(см)
Итак, R = 10см
y = Rh = 300 - 10² = 200
h = Rh/R = 200/10 = 20 (см)
Отношение R/h = 10/20 = 1/2
Точка D расположена с той же стороны от точки А, что и точка В,
значит, точки С и D лежат по одну сторону от точки А.