Пусть О - точка пересечения диагоналей прямоугольника. Расстоянием от точки О до стороны АВ будет перпендикуляр ОН, опущенный из точки О к АВ. ОН⊥АВ, ВС⊥АВ, значит ОН║ВС. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Значит О - середина АС. О - середина АС, ОН║ВС, значит ОН - средняя линия ΔАВС по признаку. Тогда ВС = 2ОН = 16 см. Sabcd = AB·BC = 18 · 16 = 288 см²
Пусть SO высота пирамиды. Для грани SAB построим линейный угол двугранного угла. Для этого проведем из точки О перпендикуляр ОН к ребру основания АВ. ОН - проекция SH на плоскость основания, значит SH⊥AB по теореме о трех перпендикулярах. ∠SHO = 60° - линейный угол двугранного угла.
Аналогично строим линейные углы наклона всех боковых граней.
SΔaob = АВ · ОН / 2 SΔsab = AB · SH / 2
Saob / Ssab = OH / SH = cos∠SHO = cos60° = 1/2
Saob = Ssab/2
Так как все боковые грани наклонены под одним углом, для каждой боковой грани и ее проекции мы получим такое же отношение. Значит, площадь основания равна половине площади боковой поверхности: Sосн = Sбок/2 = 36/2 = 18
Пусть SO высота пирамиды. Для грани SAB построим линейный угол двугранного угла. Для этого проведем из точки О перпендикуляр ОН к ребру основания АВ. ОН - проекция SH на плоскость основания, значит SH⊥AB по теореме о трех перпендикулярах. ∠SHO = 60° - линейный угол двугранного угла.
Аналогично строим линейные углы наклона всех боковых граней.
SΔaob = АВ · ОН / 2 SΔsab = AB · SH / 2
Saob / Ssab = OH / SH = cos∠SHO = cos60° = 1/2
Saob = Ssab/2
Так как все боковые грани наклонены под одним углом, для каждой боковой грани и ее проекции мы получим такое же отношение. Значит, площадь основания равна половине площади боковой поверхности: Sосн = Sбок/2 = 36/2 = 18
Расстоянием от точки О до стороны АВ будет перпендикуляр ОН, опущенный из точки О к АВ.
ОН⊥АВ, ВС⊥АВ, значит ОН║ВС.
Диагонали прямоугольника равны и точкой пересечения делятся пополам. Значит О - середина АС.
О - середина АС, ОН║ВС, значит ОН - средняя линия ΔАВС по признаку. Тогда ВС = 2ОН = 16 см.
Sabcd = AB·BC = 18 · 16 = 288 см²